Rabu, 21 Maret 2012

Cina and Nuke Power!!.... >>> The new face of safe nuclear..>> “The hotter you can get, the more efficiently you can turn heat into electricity,” said Sorensen.“Typical reactors today, they only get about one third conversion efficiency. We can get about half.” He also claims that in his design, thorium “isobreeds”, meaning it creates as much fissile fuel as it burns up...>> China grabbing up uranium to secure nuclear lead..>>

China grabbing up uranium to secure nuclear lead

By  | March 19, 2012, 4:15 PM PDT


China Guangdong Nuclear Power is discussing partnering with Rio Tinto in Nambia's Rossing uranium mine (above) and the nearby giant Husab uranium project, which China Guangdong has acquired.
More signs that China will lead the world in nuclear power: The country is snapping up a significant chunk of the world’s supply of uranium in part by buying mines in Africa and making deals with Canada to secure the nuclear fuel.
China is on track to build up to 100 nuclear reactors by 2030. It already has 27 of those under construction, as a path away from the polluting, CO2-emitting coal-fired plants that supply 80 percent of its electricity. The country looks likely to vault into the top position of nuclear generating nations - 100 new reactors would be nearly a quarter of the 435 nuclear power reactors that are commercially generating electricity in the world today.
Chinatown: China Guangdong now controls Namibia's promising Husab uranium project about 45 miles inland from coastal Swakopmund.
Securing a supply of uranium is crucial to  its - and any country’s - near-term and longer nuclear future, since uranium will for some time remain the fuel that powers nuclear reactors. And that is exactly what China is doing, with trademark aggressiveness.
Today, Chinese nuclear company China Guangdong Nuclear Power Group strengthened its recently acquired control of Namibia’s giant Husab uranium project by buying an additional 14.2 percent share of the mine’s former owner, Australia’s Extract Resources, Dow Jones is reporting.
Husab is believed to hold the world’s fourth largest uranium-only deposit. Namibia is the world’s fourth largest uranium producing country after Kazakhstan, Canada and Australia, according to i-Nuclear.
China Guangdong had within the last six weeks already acquired majority ownership of Extract and the Namibian site. It gained a large chunk on Feb. 7  when it acquired Kalahari Minerals plc, a British uranium and gold mining company that owned 43 percent of Extract.
Namibia
China Guangdong and British mining giant Rio Tinto are also discussing jointly operating Husab and the vast Rossing uranium mine, according to an article last month by Bloomberg Businessweek. Rio owns Rossing, which is about 4 miles from Husab in western Namibia, about 45 miles from the coast.
The Indian website Firstpost cites China Daily notingthat China as a whole - there are many nuclear companies in China in addition to China Guangdong - ”plans to import more uranium this year and is busy scouting to buy uranium mines abroad.”  China already buys 95 percent of the uranium that comes from Kazakhstan, Namibia, Australia and Uzbekistan, it says. Furthermore, Canadian Prime Minister Stephen Harper recently agreed to export more uranium to China.
Canon Bryan, CEO of  Vancouver-based nuclear fuel company Thorium Onepointed out to SmartPlanet that those five countries between them produce 73.5 percent of the world’s uranium, and are all among the planet’s top seven uranium producers.
“If China is buying all their production, where do the other 29 countries with reactors get their supply from?” asks Bryan, who is also CEO of a uranium company, Vico Energy. “Note also that when China buys uranium - or when any utility buys uranium - they do not only buy enough for a few months. They typically enter into futures contracts to buy several years of supply for at least one power station.”
China’s uranium grab won’t matter as much to countries like Germany that have sworn (for now, anyway) to eventually disconnect nuclear power following the meltdowns at Fukushima in Japan a year ago. But countries including France, the UK, the U.S., India and others must keep a sharper eye than ever on uranium supply.
“Demand for uranium is rising as developing countries including China construct new nuclear power plants, coinciding with a deficit in supplies,” Bloomberg Businessweek noted. “The price of nuclear fuel may rise 15 percent to $60 a pound this year after a slump that followed the Fukushima nuclear disaster, according to the median of the five analysts surveyed by Bloomberg.”
Nuclear power countries also have another recourse: They could abandon uranium, and switch to thorium fuel, which augurs safer, less weapons prone, and more efficient nuclear reactors that do not produce the long lived and dangerous waste that uranium reactors do.
Any thorium program would require several years or more for development - although it could draw on the substantial research that took place in the 1950s and 1960s  -  and for regulatory approval,
But other nuclear nations need to get cracking here, too, because guess which country is squarely on the thorium advancement trail (while also building uranium reactors)? Clue: its capital is Beijing.
Photo of Rossing mine by lkiwaner. Namibia map by BlueMars. Namibia/Africa map by Alvaro1984 18. All via Wikipedia.
More nuclear future on SmartPlanet:
And elsewhere:
Kirk Sorensen believes firmly that safe nuclear power can contribute significantly to the world’s energy future – provided that reactors run on liquid thorium fuel rather than on solid uranium as they do today.
Showing the courage of his convictions, Sorensen has quietly launched his own thorium reactor company, called Flibe Energy, in Huntsville, Ala. He aims to have liquid thorium reactors operating within 5 to 8 years.
Sorensen says he wants to “redefine” nuclear, so that it deservedly takes on a clean and safe association, contrary to its long running negative place in popular opinion, as swaths of the public fear the hazards of nuclear waste and nuclear power accidents. The industry is fighting harder than ever to improve nuclear’s image after the meltdown earlier this year at Japan’s Fukushima Daiichi plant.
“After Fukushima, everybody is asking whether nuclear power can be safe,” Sorensen (pictured, below) said in an interview. His resounding answer is “yes.”
But it will take nothing less than for the industry to shift from its conventional reactor designs and from the uranium 235 fuel process on which it began to settle in the 1960s, according to Sorensen.
Instead, he says, it has to adopt a liquid thorium technology similar to what nuclear developers built in the 1960s at Oak Ridge National Laboratory in Tennessee, but that lost out (pictured above).
“In the 40s and 50s they had an expansive definition of what nuclear power was – it wasn’t just solid fuel uranium reactors,” said Sorensen, who is Flibe’s president. “But that’s what it has come to mean now.”

Thorium lost in part because it did not create lethal waste - plutonium - that could be used to make bombs the way uranium did. In the heat of the Cold War, the U.S. government and military demanded such deadly material. (Oak Ridge originated in the 1940s to support the Manhattan Project, which developed the world’s first atomic bomb).
Today, other countries including China and India are pursuing thorium nuclear projects. Sorensen believes that thorium should be the pillar of an American nuclear future, because thorium “is so fundamentally different than every other nuclear story out there right now.”
Because his thorium reactor would not produce plutonium, it would mitigate the chance of nuclear weapons proliferation and eliminate the need for utilities to bury plutonium waste.
Although thorium in some designs does produce plutonium waste, that waste is less hazardous than other mixes of plutonium waste, there’s less of it, and it decomposes much faster than conventional waste – hundreds of years rather than thousands or more, according to various thorium proponents.
And thorium-based fuel fissions much more efficiently than does uranium 235, meaning a thorium reactor requires less fuel.
That is in part because the fission cycle runs hotter than conventional uranium cycles, said Sorensen. In the Flibe design, thorium reaction temperatures rise to about 750 degrees Celsius to drive gas turbines, compared to conventional reactors, which tend to reach less than half that temperature and drive less efficient steam turbines, he said.
“The hotter you can get, the more efficiently you can turn heat into electricity,” said Sorensen.“Typical reactors today, they only get about one third conversion efficiency. We can get about half.” He also claims that in his design, thorium “isobreeds”, meaning it creates as much fissile fuel as it burns up.
For Sorensen, the key to making it happen is to deploy an unconventional reactor technology, called a Liquid Fluoride Thorium Reactor (LFTR, pronounced “lifter”). It is a type of molten salt reactor, which uses liquid salt rather than water as its coolant, akin to what Oak Ridge developed.
Flibe’s LFTR uses a liquid fluoride salt to serve both as fuel carrier and coolant. The fuel consists of thorium and uranium 233 – different from the uranium 235 used in conventional reactors. It fissions in the liquid, heats up, and passes through a heat exchanger that conveys the heat to fuel-free liquid fluoride salt that eventually drives the gas turbine.
In the event of a total power loss, a frozen plug melts, allowing the fuel to drain into a passively cooled tank where fission stops. Normally, the plug is kept frozen by an external cooling fan.
The company name, Flibe, comes from the scientific term FLiBe, an anagram and acronym for the molten salt that Sorensen uses, which consists of lithium fluoride (LiF) and beryllium fluoride (BeF2).
Another inherent safety feature of the LFTR is that it runs at normal atmospheric pressure, rather than at the 3000-psi that many conventionally cooled reactors require to keep cooling water in liquid state, Sorensen claimed.
Conventional cooling systems can also require external generators to help pump and recombine water, and those generators can fail such as at Fukushima.
Some of Sorensen’s thorium competitors advocate using thorium in conventional reactors likepressurized water reactors, using thorium in solid fuel form, not liquid. They say that would substantially lower the costs of moving to a new fuel, because it would not entail the high-priced development of new reactors.
Sorensen countered that you only get the full benefits of thorium by applying it in a LFTR type reactor.
Sorensen faces huge hurdles. His project won’t be cheap. Flibe co-founder and chief legal counsel Kirk Dorius estimates it will cost at least $1 billion to develop a modest utility-sized reactor (it’s not clear whether that would mean something around or above a gigawatt of capacity).
So Flibe is initially focusing on smaller, “modular”-sized reactors of around 20 to 30 megawatts. Dorius said even that size would cost “hundreds of millions” for “the first in kind demonstrator reactors” but that “mass production” could slash costs in half within 5 years.
He faces stiff resistance from the status quo, as the nuclear supply chain is heavily vested in solid uranium 235. Likewise, other carbon-free alternatives such as wind and solar are gaining traction.And regulators like the Nuclear Regulatory Commission in the U.S. would have to approve LFTR, which is not assured.
If anyone can pull this off, it’s Sorensen, an impassioned thorium zealot who worked as chief nuclear technologist at Huntsville-based Teledyne Brown until he left earlier this year, and who also runs a blog called EnergyFromThorium.
“It’s a challenge,” said Sorensen. “But what is the end product worth to the world? I’d say the benefit is more than compelling enough to take on the risk. If we don’t change the public’s definition of nuclear power pretty soon, it’s going to become more and more difficult to realize the great potential of nuclear energy.”
Photos:
Top: Wikimedia Commons (from U.S Federal Government)
Lower: provided by Kirk Sorensen

Meet the future of nuclear power: 

8 guys in China


The eight top execs at China National Nuclear Corp. Bill Gates met CNNC's president, Mr. Sun Qin, as early as last June. China will lead the world in nuclear.
Bill Gates knows some of the guys above. They run China National Nuclear Corp., China’s huge state-owned nuclear company. Besides chairing Microsoft, Gates is chairman of nuclear startup TerraPower, and he’d like to sell CNNC a reactor. He’s hardly the only one knocking on their door.
You see, China will lead the world in nuclear power. It’s a growth market, perhaps even a boom one.
While other countries equivocate on nuclear policy in a post-Fukushima era - Germany has famously decided to abandon nuclear - China is going for it. It is currently building 27 nuclear reactors and it could install 100 or more by 2030, according to the World Nuclear Association. That’s nearly a quarter of the 432 reactors that the WNA says operate in the world today.
It’s all part of a plan - goodness knows China can plan - to move away from the fossil fuels that are wreaking havoc on air quality and health and also spewing greenhouse gases in a country that derives 80 percent of its electricity from coal-fired plants. While China’s energy engine is also making steady solar and wind advances, make no mistake: It will rely on nuclear.
So it was really no surprise, in fact, not even news this week when the media went atomic with reports that Gates is talking to China National Nuclear Corp. about possibly developing a reactor with them. We’ve known that since last June, when CNNC posted a brief statement on its websiteconfirming that its boss and and second-in-charge had met with Gates and his Terra CEO, John Gilleland.
On June 9th, CNNC general manager Mr. Sun Qin, (and) vice-general manager Mr. Yu Jianfeng met with American Terra Power company chairman Mr. Bill Gates and CEO Mr. John Gilleland, they conducted a discussion about the cooperation between CNNC and Terra Power company,” the CNNC statement said. (That’s Sun Qin in the mug shots above, where CNNC calls him “president.”)
After the meeting last summer, I spoke with CEO Gilleland for my Kachan & Co. report on nuclear’s future. Gilleland was encouraged, but he made it clear that a deal with China was not fait accompli. It’s still not. Terra is offering its wares in other countries as well, including India and Russia.
Gates merely reaffirmed all that this week, noting in a talk at China’s Ministry of Science and Technology that Terra is in the “early stages” of discussions with CNNC. Don’t believe the more sensational reports saying it’s a  done deal. While that might eventually come true, Terra and China are still talking.
What makes an eventual China deal plausible is that Terra’s reactor fits a design known as “fast neutron reactor,”  or FNR.  China plans — there’s that planning again — to shift heavily towards FNRs by 2050, according to the WNA.
Unlike today’s conventional reactors, FNRs do not slow down, or “moderate”, the neutrons that split out of atoms and serve as the heat source that eventually drives a turbine to make electricity.  FNRs can be more efficient and cost-effective. Depending on the design, they can burn both the depleted and spent uranium left over from the conventional nuclear fuel cycle.  And FNRs tend to use as fuel the weapons-grade plutonium left over after burning uranium, rather than leaving the plutonium as hazardous waste as happens in today’s reactors. Terra uses an FNR design called a “traveling wave.”
Almost all of the world’s 432 operating commercial reactors are conventional water-cooled, uranium-fueled models. They produce weapons-grade waste, and if not managed properly they can dangerously melt down. That’s extremely rare, but it’s what happened at Japan’s Fukushima nuclear plant in March.
China is currently building conventional reactors, but it is intently developing a variety of other nuclear technologies that are potentially safer and less weapons-prone.
Besides FNRs, these include reactors that run on thorium fuel, as well as unconventional designs such as “pebble bed reactors,” “molten salt reactors” and, of course, fusion reactors - the Holy Grail concept that will nicely put atoms together rather than hazardously rip them asunder. Most of these concepts date back to the 1950s and 1960s, but lost out commercially for various reasons (in the case of fusion, no one has yet figured it out; stay tuned).
China would prefer to develop these alternatives through homegrown initiatives but it is demonstrating a possible willingness to work with foreign entities such as Terra.
China will, I repeat, will, develop these unconventional reactors. CNNC, the huge state-owned group talking to Gates and Gilleland, is just one of over a hundred nuclear organizations in China, many of which are also looking into alternative nuclear technologies. CNNC alone has declared it will invest $120 billion in nuclear through 2020. Thus, they represent the industry’s future.
This will pressure the rest of the world to do adopt alternative nuclear technologies, in order to compete economically. Plenty of companies are working on alternative nuclear around the globe. San Diego-based General Atomics is developing an FNR that could well challenge Terra’s. Huntsville, Ala.-based Flibe Energy is developing a thorium based molten salt reactor. Norway’s Thor Energy is making thorium fuel advances.  South Africa’s Q-Power has an impressive pebble bed reactor on the drawing board.  That’s just to name a few.
In the United States, President Obama’s Blue Ribbon Commission on America’s Nuclear Future is contemplating changing nuclear regulations in order to facilitate the development of these alternatives, which threaten the entrenched “nuclear as usual” crowd.
Meanwhile, if you have a good nuclear idea, you might want to get in touch with Mr. Sun Qin in Beijing.
Photo: screen grab from China National Nuclear Corp.
More atoms and CO2 on SmartPlanet:
And elsewhere:
Demonstrating that there might well just be more than one way to skin the nuclear fusion cat, a couple of British companies have joined what some UK scientists might consider the “other” international mega fusion project.

The BBC reports that the two companies – AWE and Rutherford Appleton Laboratory - are now card-carrying members of the National Ignition Facility, which is the huge fusion project at Lawrence Livermore National Laboratory in California.
The UK is already in the ITER club, via government backing. ITER – International Thermonuclear Experimental Reactor - is the joint fusion project in Cadarache, France, funded 45% by the EU and by Japan, India, Russia, China, S. Korea and the U.S.
Livermore’s NIF operates in a 10-story building that could accommodate 3 football fields. It is experimenting with a laser-based technology that would cause isotopes of hydrogen to fuse, giving off heat that would drive turbines.
The folks at ITER have the same goal of fusion. But rather than use lasers, they want to deploy super conducting magnets in a giant structure called a tokamak.
Fusion is intended to be cleaner and safer than the nuclear fission reactors in use today, which split atoms rather than fusing them.
We’ll get into the details of how all this supposedly works in a subsequent blog. Suffice to say for now that ever since the idea emerged in the 1950s, fusion has seemed to remain a constant 30-to-50 years away. One of the big problems is that fusion currently uses more energy than it makes available.
But in the last few years, we’ve noticed the emergence of a handful of start-up companies in fusion, and even the arrival of venture capital. It has also not escaped our attention that China is throwing considerable resources at it.
Could the elusive goal of clean electricity via safe nuclear fusion actually be drawing closer?
Photo: Lawrence Livermore National Laboratory
Start your week smarter with our weekly e-mail newsletter. It's your cheat sheet for good ideas. Get it.

Tidak ada komentar:

Poskan Komentar